Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(1): 236-243, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38123468

RESUMO

Organic molecules are of great interest for gas sensing applications. However, achieving high-performance gas sensors with high sensitivity, fast response, low consumption, and workability in humid conditions is still challenging. Herein, we report the rational design and synthesis of an ion-in-conjugation polymer, PADC (poly-4,4'-azodianiline-croconamide), obtained by the condensation of croconic acid with 4-4'diaminoazobenzene for gas sensing under humid conditions. The as-fabricated PADC-based gas sensor exhibits ultrahigh sensitivity (802.7 ppm-1 at 1 ppm), subppb detection limit, and high selectivity under humid air with an 80% humidity effect at a temperature down to 350 K. PADC shows good planarity, excellent thermostability, and a narrow band gap of 1.2 eV because of azobenzene fragments spacing previously repulsed biphenyl rings. Compared to previous humidity immunity works, PADC-based sensors realized humidity immunity at a relatively lower temperature, resulting in lower energy consumption.


Assuntos
Dióxido de Nitrogênio , Poli A , Umidade , Polímeros , Temperatura
2.
J Colloid Interface Sci ; 648: 595-603, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315481

RESUMO

NO3- is a common water pollutant that can serve as a potential nitrogen source for electrocatalytic NH3 production. However, an efficient and complete removal of low NO3- concentrations remains a challenge. Fe1Cu2@MXene bimetallic catalysts were constructed on two-dimensional Ti3C2Tx MXene carriers via a simple solution-based synthetic method and used for the electrocatalytic reduction of NO3-. The combination of the rich functional groups, high electronic conductivity on the MXene surface, and the synergistic effect between the Cu and Fe sites enabled the composite to effectively catalyse NH3 synthesis, with a 98% conversion of NO3- in 8 h and a selectivity for NH3 of up to 99.6%. In addition, Fe1Cu2@MXene showed excellent environmental and cyclic stability at various pH values and temperatures over multiple (14) cycles. Semiconductor analysis techniques and electrochemical impedance spectroscopy confirmed that the synergistic effect provided by the dual active sites of the bimetallic catalyst enabled fast electron transport. This study provides new insights into the synergistic promotion of NO3- reduction reactions using bimetals.

3.
J Colloid Interface Sci ; 643: 403-408, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37084620

RESUMO

Electrochemical oxidation of urea is of great importance in the removal and energy exchange and storage of urea from wastewater as well as of potential applications in potable dialysis of end-stage renal disease. However, the lack of economical electrocatalysts hinders its widespread application. In this study, we successfully fabricated ZnCo2O4 nanospheres with bifunctional catalysis on nickel foam (NF). The catalytic system has high catalytic activity and durability for urea overall electrolysis. The urea oxidation and hydrogen evolution reactions required only 1.32 V and -80.91 mV to obtain ± 10 mA cm-2. Only 1.39 V was needed to obtain 10 mA cm-2 for 40 h without noticeably declining activity. The excellent performance could be attributed to the fact that the material can provide multiple redox couplings and a three-dimensional porous structure to facilitate the release of gases from the surface.

4.
Nat Commun ; 14(1): 2133, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37069153

RESUMO

Two-dimensional covalent organic frameworks (2D COFs) are promising for gas sensing owing to the large surface area, abundant active sites, and their semiconducting nature. However, 2D COFs are usually produced in the form of insoluble micro-crystallites. Their poor contacts between grain boundaries severely suppress the conductivity, which are too low for chemresistive gas sensing. Here, we demonstrate that halide perovskites can be employed as electric glues to bond 2D COF crystallites to improve their conductivity by two orders of magnitude, activating them to detect NO2 with high selectivity and sensitivity. Resonant microcantilever, grand canonical Monte Carlo, density functional theory and sum-frequency generation analyses prove that 2D COFs can enrich and transfer electrons to NO2 molecules, leading to increased device conductivity. This work provides a facile approach for improving the conductivity of polycrystalline 2D COF films and may expand their applications in semiconductor devices, such as sensors, resistors, memristors and field-emission transistors.

5.
Small ; 19(2): e2205341, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399645

RESUMO

Chloramphenicol (CAP) has long been used extensively in agriculture and is severely toxic to the biological environment. Microwave catalysis appears a promising method for soil remediation due to its fast and effective heat transfer, but it is challenging to prepare catalysts with good electromagnetic wave absorption and robust catalytic activity. In this study, atomically dispersed Fe on three-dimensional N-doped carbon supports (3D Fe-NC) is firstly used for microwave remediation of soil. Thanks to the synergistic effect of microwave "hot spots" and reactive oxygen species (•OH, •O2 - ), 3D Fe-NC can completely remove 99.9% of CAP in 5 min. The removal rate constant is nearly twice that of commercial activated carbon. Significantly, the germination rate of lettuce seeds in microwave-repaired soil contaminated by CAP reaches 70%. This work demonstrates the application of Fe single-atom catalyst in microwave remediation of contaminated soil, providing a novel insight for agricultural soil remediation.


Assuntos
Cloranfenicol , Poluentes do Solo , Micro-Ondas , Solo , Catálise
6.
ACS Sens ; 7(12): 3782-3789, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36384296

RESUMO

As a common toxic gas, nitrogen dioxide (NO2) seriously threatens the environment and human respiratory system even at part per billion (ppb) level. Covalent organic frameworks (COFs) have gained widespread attention in sensing applications because of the benefits of designability, environmental stability, and a large number of active sites. However, the competitive adsorption of water molecules and the target gas molecules at room temperature as well as the weak interaction between COFs and gas molecules hinder their practical applications. Here, we introduce ion-in-conjugation (IIC) into a covalent organic framework (COF) by preparing a condensate of squaraine (SA) with 1,3,5-tris(4-aminophenyl)benzene (TAPB) to form a mesoporous macrocyclic material (SA-TAPB). Layers of SA-TAPB, drop cast onto interdigitated Ag-Pd alloy electrodes, show a statistically significant conductivity response to NO2 at concentrations as low as 30 ppb and a theoretical detection limit of 10.9 ppb. The sensor displays a lower sensitivity to variations in humidity when operated at 80 °C compared to room temperature. The density functional theory (DFT) calculations indicated that the main adsorption site of NO2 is dual hydrogen bonds formed between two amide hydrogen atoms of SA-TAPB and the NO2 molecule. Gas adsorption experiments revealed that SA-TAPB has the largest adsorption capacity of NO2 versus other interference gases, which were responsible for the excellent selectivity toward NO2.


Assuntos
Estruturas Metalorgânicas , Humanos , Dióxido de Nitrogênio , Adsorção , Ligação de Hidrogênio , Gases
7.
Small ; 18(52): e2204023, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285771

RESUMO

Most organic semiconductors (OSCs) consist of conjugated skeletons with flexible peripheral chains. Their weak intermolecular interactions from dispersion and induction forces result in environmental susceptibilities and are unsuitable for many multifunctional applications where direct exposure to external environments is unavoidable, such as gas absorption, chemical sensing, and catalysis. To exploit the advantages of inorganic semiconductors in OSCs, ion-in-conjugation (IIC) materials are proposed. An IIC material refers to any conjugated material (molecules, polymers, and crystals) in Kekule's structural formula containing stoichiometric ionic states in its conjugated backbone in the electronic ground state. In this review, the definitions, structures, synthesis, properties, and applications of IIC materials are described briefly. Four types of IIC material, including zwitterionic conjugated molecules/polymers, conjugated ionic dyes, π-d conjugated molecules and polymers, and coordinatively doped polymers, are reported. Their applications in gas sensing, humidity sensing, resistive memory devices, and thermal/photo-/electro-catalysis are demonstrated. The challenges and opportunities for future research are also discussed. It is expected that this work will inspire the design of new organic electronic information materials.

8.
Adv Mater ; 34(36): e2205767, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841127

RESUMO

Nitrate electrocatalytic reduction (NO3 RR) for ammonia production is a promising strategy to close the N-cycle from nitration contamination, as well as an alternative to the Haber-Bosch process with less energy consumption and carbon dioxide release. However, current long-term stability of NO3 RR catalysts is usually tens of hours, far from the requirements for industrialization. Here, symmetry-broken Cusingle-atom catalysts are designed, and the catalytic activity is retained after operation for more than 2000 h, while an average ammonia production rate of 27.84 mg h-1 cm-2 at an industrial level current density of 366 mA cm-2 is achieved, obtaining a good balance between catalytic activity and long-term stability. Coordination symmetry breaking is achieved by embedding one Cu atom in graphene nanosheets with two N and two O atoms in the cis-configuration, effectively lowering the coordination symmetry, rendering the active site more polar, and accumulating more NO3 - near the electrocatalyst surface. Additionally, the cis-coordination splits the Cu 3d orbitals, which generates an orbital-symmetry-matched π-complex of the key intermediate *ONH and reduces the energy barrier, compared with the σ-complex generated with other catalysts. These results reveal the critical role of coordination symmetry in single-atom catalysts, prompting the design of more coordination-symmetry-broken electrocatalysts toward possible industrialization.

9.
Angew Chem Int Ed Engl ; 61(20): e202200872, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191168

RESUMO

Exploring high-efficiency and stable halide perovskite-based photocatalysts for the selective reduction of CO2 to methane is a challenge because of the intrinsic photo- and chemical instability of halide perovskites. In this study, halide perovskites (Cs3 Bi2 Br9 and Cs2 AgBiBr6 ) were grown in situ in mesoporous TiO2 frameworks for an efficient CO2 reduction. Benchmarked CH4 production rates of 32.9 and 24.2 µmol g-1 h-1 with selectivities of 88.7 % and 84.2 %, were achieved, respectively, which are better than most reported halide perovskite photocatalysts. Focused ion-beam sliced-imaging techniques were used to directly image the hyperdispersed perovskite nanodots confined in mesopores with tunable sizes ranging from 3.8 to 9.9 nm. In situ X-ray photoelectronic spectroscopy and Kelvin probe force microscopy showed that the built-in electric field between the perovskite nanodots and mesoporous titania channels efficiently promoted photo-induced charge transfer. Density functional theory calculations indicate that the high methane selectivity was attributed to the Bi-adsorption-mediated hydrogenation of *CO to *HCO that dominates CO desorption.

10.
ACS Sens ; 6(10): 3800-3807, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550676

RESUMO

In recent years, the performance research of perovskite materials is not only concentrated in the field of solar cells or optics, but the field of gas sensing has gradually entered the public view. However, the detection of nitric oxide (NO) by lead-free halide perovskites has not yet been reported. Herein, we use Cs2PtI6 to realize the first example of a halide perovskite applied to NO sensing. Due to favoring Pt-N binding, the material has some excellent properties such as a NO detection limit as low as 100 parts-per-billion (ppb), ultrahigh selectivity to NO, and can work at room temperature for more than 2 months. In situ sum frequency generation (SFG) spectra and crystal orbital Hamilton population (COHP) analysis reveal that the strong bonding interaction between Pt 5s and N 2s ensure the high adsorption energy, and Pt 5d electron back donation to N 2px, N 2pz antibonding causes the conductive change of the sensors. In addition, its flexible wearable technology shows the application potential of the device and promotes the further development of perovskite materials.


Assuntos
Compostos de Cálcio , Óxido Nítrico , Óxidos , Titânio
11.
Angew Chem Int Ed Engl ; 60(42): 22933-22939, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431192

RESUMO

A built-in electric field in electrocatalyst can significantly accumulate higher concentration of NO3 - ions near electrocatalyst surface region, thus facilitating mass transfer for efficient nitrate removal at ultra-low concentration and electroreduction reaction (NO3 RR). A model electrocatalyst is created by stacking CuCl (111) and rutile TiO2 (110) layers together, in which a built-in electric field induced from the electron transfer from TiO2 to CuCl (CuCl_BEF) is successfully formed . This built-in electric field effectively triggers interfacial accumulation of NO3 - ions around the electrocatalyst. The electric field also raises the energy of key reaction intermediate *NO to lower the energy barrier of the rate determining step. A NH3 product selectivity of 98.6 %, a low NO2 - production of <0.6 %, and mass-specific ammonia production rate of 64.4 h-1 is achieved, which are all the best among studies reported at 100 mg L-1 of nitrate concentration to date.

12.
Adv Mater ; 33(24): e2100674, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960036

RESUMO

Owing to their special photoelectric properties, halide perovskites have always attracted research attention. Hollow-structured halide perovskites have many practical applications but are challenging to prepare as most template methods violate their poor chemical and thermal stability. In this study, novel halide perovskite Cs2 PdBr6 hollow nanospheres are prepared using a template-free method; specifically, large quantities of highly pure lead-free halide perovskite Cs2 PdBr6 hollow nanospheres are produced at 30 °C without a surfactant. These ultrapure nanospheres exhibit superiority in chemresistive detection of CO with a detection limit of 50 ppb, which is the lowest among all the reported CO sensing materials. Moreover, in situ sum-frequency-generation spectra and density functional theory calculations reveal that the high sensitivity is attributable to the large specific surface area and surfactant-free surface of rich Br- vacancies that favor CO binding. Overall, this work provides insight on regulation of the halide perovskite structure and the use of hollow spheres in gas-sensing applications.

13.
Angew Chem Int Ed Engl ; 60(28): 15328-15334, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885188

RESUMO

Organic electrical gas sensors have been developed for many decades because of their high sensitivity and selectivity. However, their industrialization is severely hindered by their intrinsic humidity susceptibility and poor recovery. Conventional organic sensory materials can only operate at room temperature owing to their weak intermolecular interactions. Herein, we demonstrate using a croconate polymer (poly-4,4'-biphenylcroconate) that the "ion-in-conjugation" concept enables organic gas sensors to operate at 100 °C and 70 % relative humidity with almost complete recovery. The fabricated sensor had a parts-per-billion (ppb) detection limit for NO2 and showed the highest sensitivity (2526 ppm-1 at 40 ppb) of all reported NO2 chemiresistive sensors. Furthermore, charge transfer increased with temperature. Theoretical calculations and in situ FTIR spectra confirmed the ion-in-conjugation-inspired hydrogen bond as key for excellent sensitivity. A NO2 alarm system was assembled to demonstrate the feasibility of this sensor.

14.
ACS Appl Mater Interfaces ; 12(8): 9865-9871, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32009386

RESUMO

MXenes are a new type of two-dimensional material, and they have attracted extensive attention because of their outstanding conductivity and rich surface functional groups that make surface engineering easy and possible for adapting to diverse applications. However, there are scarce studies on surface engineering of MXene. Herein, we demonstrate for the first time that octylphosphonic acid-modified Ti3C2Tx MXene can be used as an active layer for memory devices and exhibits stable ternary memory behavior. Low threshold voltage, steady retention time, clearly distinguishable resistance states, high ON/OFF rate, OFF/ON1/ON2 = 1:102.7:104.1, and considerable ternary yield (58%) were obtained. In the proof of the mechanism, in situ conductive atomic force microscopy was conducted and the electrode-area relationship was analyzed to demonstrate that charge trapping and filament conduction are more suitable in the nonvolatile information memory of Ti3C2Tx-OP MXene devices. In addition, a polyethylene-terephthalate-based flexible Ti3C2Tx-OP memory device can maintain its stable ternary memory performance after being bent 5000 times. This work provides an easy method for surface modification of MXene and broadens the field of MXene.

15.
Nanoscale Adv ; 2(5): 2170-2176, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132520

RESUMO

Herein, we report a fine-tuning of the two-dimensional alkali-pyridyl coordination assemblies facilely realized by surface reaction between tetrapyridyl-porphyrin molecules and alkali halides on Ag(111) under a solventless ultrahigh vacuum condition. High-resolution scanning tunneling topography and X-ray photoelectron spectra reveal the formation of alkali-pyridyl coordination and the induced conformational tuning of the porphyrin macrocycle cores. Furthermore, employing other different alkali halide substitutes, we demonstrate a fine-tuning of the metal-organic nanostructures at the sub-Å scale. Postdeposition of Fe onto the as-formed precursor layer yields a two-dimensional bimetallic framework structure, manifesting a functionalization of the metal-organic interfaces.

16.
Small ; 15(49): e1905731, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31668013

RESUMO

Memristors are emerging as a rising star of new computing and information storage techniques. However, the practical applications are severely challenged by their instability toward harsh conditions, including high moisture, high temperatures, fire, ionizing irradiation, and mechanical bending. In this work, for the first time, lead-free double perovskite Cs2 AgBiBr6 is utilized for environmentally robust memristors, enabling highly efficient information storage. The memory performance of the typical indium-tin-oxide/Cs2 AgBiBr6 /Au sandwich-like memristors is retained after 1000 switching cycles, 105 s of reading, and 104 times of mechanical bending, comparable to other halide perovskite memristors. Most importantly, the memristive behavior remains robust in harsh environments, including humidity up to 80%, temperatures as high as 453 K, an alcohol burner flame for 10 s, and 60 Co γ-ray irradiation for a dosage of 5 × 105 rad (SI), which is not achieved by any other memristors and commercial flash memory techniques. The realization of an environmentally robust memristor from Cs2 AgBiBr6 with a high memory performance will inspire further development of robust electronics using lead-free double perovskites.

17.
Small ; 15(49): e1903188, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31650707

RESUMO

Conjugated coordination polymers have become an emerging category of redox-active materials. Although recent studies heavily focus on the tailoring of metal centers in the complexes to achieve stable electrochemical performance, the effect on different substitutions of the bridging bonds has rarely been studied. An innovative tailoring strategy is presented toward the enhancement of the capacity storage and the stability of metal-organic conjugated coordination polymers. Two nanostructured d-π conjugated compounds, Ni[C6 H2 (NH)4 ]n (Ni-NH) and Ni[C6 H2 (NH)2 S2 ]n (Ni-S), are evaluated and demonstrated to exhibit hybrid electrochemical processes. In particular, Ni-S delivers a high reversible capacity of 1164 mAh g-1 , an ultralong stability up to 1500 cycles, and a fully recharge ability in 67 s. This tailoring strategy provides a guideline to design future effective conjugated coordination-polymer-based electrodes.

18.
Adv Mater ; 31(37): e1806424, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31379043

RESUMO

Memcapacitors are emerging as an attractive candidate for high-density information storage due to their multilevel and adjustable capacitances and long-term retention without a power supply. However, knowledge of their memcapacitive mechanism remains unclear and accounts for the limited implementation of memcapacitors for multilevel memory technologies. Here, repeatable and reproducible quaternary memories fabricated from hybrid perovskite (CH3 NH3 SnBr3 ) memcapacitors are reported. The device can be modulated to at least four capacitive states ranging from 0 to 169 pF with retention for 104 s. Impressively, an effective device yield approaching 100% for quaternary memory switching is achieved by a batch of devices; each state has a sufficiently narrow distribution that can be distinguished from the others and is superior to most multilevel memories that have a low device yield as well as an overlapping distribution of states. The memcapacitive switching stems from the modulated p-i-n junction capacitance triggered by Br- migration, as demonstrated by in situ element mapping, X-ray photoelectron spectra, and frequency-dependent capacitance measurements; this mechanism is different from the widely reported memristive switching involving filamentary conduction. The results provide a new way to produce high-density information storage through memcapacitors.

19.
Chemistry ; 25(18): 4808-4813, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30689240

RESUMO

Recently, resistance random access memories (RRAMs) have been studied extensively, because the demand for information storage is increasing. However, it remains challenging to obtain a flexible device because the active materials involved need to be nontoxic, nonpolluting, distortion-tolerable, and biodegradable as well adhesive to diverse flexible substrates. In this paper, tannic acid (TA) and an iron ion (FeIII ) coordination complex were employed as the active layer in a sandwich-like (Al/active layer/substrate) device to achieve memory performance. A nontoxic, biocompatible TA-FeIII coordination complex was synthesized by a one-step self-assembly solution method. The retention time of the TA-FeIII memory performance was up to 15 000 s, the yield up to 53 %. Furthermore, the TA-FeIII coordination complex can form a high-quality film and shows stable ternary memory behavior on various flexible substrates, such as polyethylene terephthalate (PET), polyimide (PI), printer paper, and leaf. The device can be degraded by immersing it in vinegar solution. Our work will broaden the application of organic coordination complexes in flexible memory devices with diverse substrates.


Assuntos
Materiais Biocompatíveis/química , Complexos de Coordenação/química , Alumínio/química , Ferro/química , Membranas Artificiais , Papel , Folhas de Planta/química , Maleabilidade , Polietilenotereftalatos/química , Resinas Sintéticas/química , Propriedades de Superfície , Taninos/química , Dispositivos Eletrônicos Vestíveis
20.
Small ; 15(2): e1803896, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30537175

RESUMO

Nitrogen dioxide (NO2 ) emission has severe impact on human health and the ecological environment and effective monitoring of NO2 requires the detection limit (limit of detection) of several parts-per-billion (ppb). All organic semiconductor-based NO2 sensors fail to reach such a level. In this work, using an ion-in-conjugation inspired-polymer (poly(3,3'-diaminobenzidine-squarine, noted as PDBS) as the sensory material, NO2 can be detected as low as 1 ppb, which is the lowest among all reported organic NO2 sensors. In addition, the sensor has high sensitivity, good reversibility, and long-time stability with a period longer than 120 d. Theoretical calculations reveal that PDBS offers unreacted amine and zwitterionic groups, which can offer both the H-bonding and ion-dipole interaction to NO2 . The moderate binding energies (≈0.6 eV) offer high sensitivity, selectivity as well as good reversibility. The results demonstrate that the ion-in-conjugation can be employed to greatly improve sensitivity and selectivity in organic gas sensors by inducing both H-bonding and ion-dipole attraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...